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Abstract— This paper proposes a source-traffic based model to
estimate jointly packet losses and delays statistical behavior of a
network path. The approach relies on a Hidden Markov Model
built on real-traffic information. The effectiveness of the model
is evaluated over different real heterogeneous network scenarios.
Our experimental results show that the model captures average
(long-term) and conditional (short-term) statistics that in most
cases are typical of the single scenario. Preliminary results about
prediction on a sample path as well as investigation on the use
of the same model across different scenarios are given.

I. INTRODUCTION

Stationary phenomena in the global Internet make network
monitoring and adaptive strategies quite appealing for better
understanding and management [1]. Testing analytical mod-
els on different scenarios is crucial for effective adaptive-
techniques design.

Our analysis focuses on equivalent models for packets
loss/delay end-to-end behavior. Loss phenomena often show
bursty behavior, and packet delays present memory [2][3][4].
Furthermore, in real networks, losses and delays are strongly
correlated as it has been observed that in proximity of a loss,
larger delays tend to occur [4].

The works of Gilbert and Elliott [5][6] on bit-transmission
burst-error channels showed how a 2-state Hidden Markov
Model (HMM) was effective in characterizing some real
channels. Analogously end-to-end packet channels show burst-
loss behavior. Jiang and Schulzrinne [4] investigated packet-
channels behavior finding that Markov models are not appopri-
ate for inter-loss behavior and that delays manifest temporal
dependency. Salamatian and Vaton [7] found that an HMM
trained with experimental data captures loss behavior, and
HMMs with up to 4 states fit well the data. Liu, Matta and
Crovella [8] used an HMM-based loss-delay modeling of TCP
traffic in order to infer loss nature in hybrid wired/wireless
environments, showing how it can be used to control TCP
congestion avoidance mechanism. Similar works have been
done by Turin, Sondhi, Zorzi, Rao, Milstein [9][10] on error
sources for digital channels and wireless fading links. Wei,
Wang, Towsley and Kurose [11] proposed Markov-based mod-
els to infer from End-to-End measurements the knowledge
about the presence in the path of a dominant congested link.
Tao and Guérin [12] faced the problem of on-line learning and

0This work has been partially supported by the MIUR in the framework of
the WEB-MINDS FIRB Project.

prediction of loss behavior via HMMs built on probe traffic
and inferring congestion properties in terms of packet loss. A
continuous-time HMM is derived and used for a general traffic
source, but the assumption that statistics learned by the probe
traffic hold on for the real network behavior is needed.

These works suggest that a Bayesian state-conditioned
model may be effective in capturing loss/delay dynamic be-
havior on packet channels. What emerges is that different
kinds of Markov-based models allow appropriate modeling
of variegate network environment while keeping mathematical
tractability. Our approach is a joint description of loss and
delay based on HMM in order to capture their memory and
correlation, obtained by appropriate introduction of a hidden
variable related to the current channel congestion.

The proposed model showed to be effective for UDP traffic
over wired connections [13]. Here we test the applicability
over several heterogeneous network scenarios. State knowl-
edge and prediction may enable a powerful characterization
of future channel behavior, which could be used to imple-
ment content-adaptive strategies for coding (e.g., Multiple
Description Coding) and scheduling (e.g. traffic shaping).
Some preliminary considerations are given for the TCP case.

To highlight the significance of the proposed approach we
underline that: (i) it allows loss/delay joint description; (ii) it
allows on-line learning; (iii) it allows network monitoring; (iv)
it allows prediction; (v) it is derived by source traffic (i.e. no
probe traffic overhead is needed); (vi) it explicitly takes into
account the influence of source traffic over the network in
order to avoid assumption on network behavior; (vii) it allows
to distinguish loss/delay nature; (viii) it has been tested on a
wide range of different heterogeneous wireless scenarios and
different types of traffic, deriving analogies and differences on
the equivalent end-to-end models.

II. THE ANALYTICAL MODEL

Fig. 1 shows the reference end-to-end packet channel,
including the network and the underlying protocol layers
between a source-destination pair. Numbered constant-size
packets are transmitted, t

′
n, t

′′
n, ∆n and τn denote the departure

time, the arrival time, the inter-departure time (IDT) and the
accumulated delay of the nth packet, respectively, i.e. ∆n =
t
′
n − t

′
n−1 and τn = t

′′
n − t

′
n. The network randomly drops and

delays packets according to the current congestion. Loss/delay
memory and correlation are taken into account introducing
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Fig. 1. End-to-end packet channel
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Fig. 2. Structure of an IO-HMM
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Fig. 3. Structure of an HMM

a hidden state variable (that may be inferred by loss/delay
observation) related to the network-path congestion. Further-
more, it may be reasonable that source-traffic characteristics
influence the channel behavior. Traffic flows with different bit-
rates experience different loss/delay patterns on the same end-
to-end channel. Source-traffic characteristics has to be taken
into account in the objective of channel modeling.

Let us denote yn a variable describing the outcome experi-
ence of the nth packet, (yn > 0 means τn = yn, while yn =
−1 means the nth has been lost), and xn ∈ {s1, s2, . . . , sN}
a variable distinguishing the state of the link at time t

′
n among

N possible ones. We assume the state variable follows a
Markov chain structure, more specifically loss/delay statistics
are described via an IO-HMM [14], shown in Fig. 2, where
∆n, xn and yn are the input, the hidden-state and the output
variables, respectively. The set of parameters characterizing
the model is λ = {A(.),p, γ, ϑ}, where

• A(u) = [Ai,j(u)]Ni,j=1 is the state transition matrix, i.e.
Ai,j(u) = Pr(xn+1 = sj |xn = si,∆n = u),

• p = [p1, . . . , pN ]T is the conditional loss probability
vector, i.e. pi = Pr(nth packet is lost |xn = si),

• γ = [γ1, . . . , γN ]T and ϑ = [ϑ1, . . . , ϑN ]T are the
conditional delay vectors, in the state si delays are
Gamma distributed with parameters {γi, ϑi},

• yn is a hybrid random variable whose conditional prob-
ability density function (pdf) is

Bi(y) = piδ(t + 1) + (1 − pi)
( y

ϑi
)γi−1e

−( y
ϑi

)
ϑiΓ(γi)

,
where δ(.) and Γ(.) denotes the Dirac impulse and the
Gamma function, respectively.

The choice of delay distribution has been based on [3][15]
even though such an assumption for wireless networks it is
not obvious.

The average loss probability and delay of the model are

Ploss =
N∑

i=1

πipi , Dmean =
N∑

i=1

πidi , (1)

respectively, where π = [π1, . . . , πN ]T is the steady-state
probability distribution, i.e

πi =
∫ +∞

0

πi(u)f∆(u)du , AT (u)π(u) = π(u) ,

being f∆(.) the IDT pdf, and

di = γiϑi , (2)

the conditional mean delay.
The model throughput η(τmax), the fraction of delivered

packets within a maximum allowed delay τmax, is

η(τmax) =
N∑

i=1

πi(1 − pi)Γ(
τmax

ϑi
, γi) .

The model auto-correlation R(m) = E {yn, yn+m} is1

R(m) =




πT EII 1 m = 0
πT E Qm−1 E 1 m > 0
R(−m) m < 0

.

The model simply reduces to an HMM [16][13], shown in
Fig. 3, if packets are transmitted with constant IDT, t

′
n = nT

and ∆n = T .

A. Learning Procedure

Appropriate model parameters has to be found to model a
real channel. The EM algorithm2 [16] allows to find the most
likely set of parameters matching the statistics of a set of
output (and input in case of IO-HMM’s) sequences, namely
the training set. It is an iterative procedure searching for a
local maximum, with respect to the parameters of the model,
of the likelihood of the training set L(λ) = Pr(y|∆, λ) 3. It
is based on recursive computation of appropriate Forward and
Backward variables. In the following, the set of parameters that
represent the initialization of the procedure will be referred to
as the starting model. The Forward and Backward variables
for an IO-HMM are defined, respectively, as{

αn(i) = Pr(y1, . . . , yn, xn = si|∆1, . . . ,∆n, λ)
βn(j) = Pr(yn+1, . . . , yL|xn = sj ,∆n+1, . . . ,∆L, λ)

.

They can be recursively computed by use of{
αn+1(j) =

∑N
i=1 αn(i)Ai,j(∆n+1)Bj(yn+1)

βn−1(i) =
∑N

j=1 Ai,j(∆n)βn(j)Bj(yn)
.

The re-estimation formulas of the learning algorithm are
based on the following quantities,

ξn(i, j) = Pr(xn = si, xn+1 = sj |y,∆, λ)

=
αn(i)Ai,j(∆n+1)βn+1(j)Bj(yn+1)

L(λ)
,

γn(i) = Pr(xn = si|y,∆, λ) =
αn(i)βn(i)

L(λ)
,

where L(λ) = Pr(y|∆, λ) =
∑N

i=1 αn(i)βn(i)

=
N∑

i=1

N∑
j=1

αn(i)Ai,j(∆n+1)βn+1(j)Bj(yn+1) . (3)

1Qi,j =
R +∞
0 Ai,j(u)f∆(u)du; Ei,j = Qi,i [(1 − pi)γiϑi − pi] δi,j ;

EII i,j = Qi,i

ˆ
(1 − pi)(1 + γi)γiϑ

2
i + pi

˜
δi,j ; and 1 is a vector whose

elements are 1.
2It reduces to the Baum-Welch algorithm for HMM’s structures.
3
n
∆ = [∆1, . . . , ∆L]T ,y = [y1, . . . , yL]T

o
is the training set.

matter experts for publication in the IEEE GLOBECOM 2005 proceedings.This full text paper was peer reviewed at the direction of IEEE Communications Society subject 

IEEE Globecom 2005 485 0-7803-9415-1/05/$20.00 © 2005 IEEE



Denoting ρn(j) =
∑N

i=1 αn−1(i)Ai,j(∆n)pj
∂bj(t)
∂pj

∣∣∣
t=yn

,

the set of parameters is updated each iteration by use of the
following formulas,

Âi,j(u) =

∑L−1
n=1

∆n+1=u
ξn(i, j)∑L−1

n=1
∆n+1=u

γn(i)
,

p̂i =
∑L

n=1 ρn(i)βn(i)∑L
n=1 γn(i)

,

γ̂iϑ̂i =
∑L

n=1 ρn(i)βn(i)yn∑L
n=1 ρn(i)βn(i)

,

γ̂iϑ̂
2
i =

∑L
n=1 ρn(i)βn(i)(yn − γiϑi)2∑L

n=1 ρn(i)βn(i)
.

III. EXPERIMENTAL RESULTS

We conducted empirical experiments, analyzing the ability
of the model to capture system invariances with respect
to packet loss/delay in various heterogeneous scenarios. We
considered heterogeneous networks in terms of access network
technologies (ANTs), end-users devices, Operating Systems
(OS) and end-users application. Due to space limitations, in
this paper we have focused on 802.11b in Ad-Hoc configura-
tion, GPRS, UMTS, and Ethernet. The performance evaluation
study has been performed using D-ITG (Distributed Internet
Traffic Generator [17]. We have proceeded obtaining empirical
data from the different scenarios4 to be processed by the model
described in Section II. Output sequences5 are derived from
packet numbers, transmission and delivery times, available by
use of D-ITG. The results showed in this paper are related
to situations with high traffic load relying on the channel,
exhibiting the network a strong burstiness that makes i.i.d.
modeling rather inadequate.

More precisely, in this paper we show results when we
applied the model to the following scenarios:

(A) Ad-Hoc networks where we have Laptops, Linux OS,
UDP, and a WLAN 802.11b as ANT;

(B) Integration of LANs and GPRS networks (Ether-
net/WLAN 802.11b and GPRS) where we have Lap-
tops, both Linux and Windows XP OS, UDP, and
Ethernet, WLAN 802.11b, and GPRS as ANT;

(C) Integration of LANs and UMTS networks (Ether-
net/WLAN 802.11b and UMTS) where we have
Laptops, both Linux and Windows XP OS, UDP, and
Ethernet, WLAN 802.11b, and UMTS as ANT.

The reason of our choice relies on the following consider-
ations. Currently in real heterogeneous scenarios a demand
to integrate WLANs with third-generation (3G) cellular net-
works, such as GSM/GPRS, UMTS has yielded. In these
environments, among the many factors that determine the
feasibility of a given network scenario for the given set

4It is worth noting that we ignored data related to the initial and final
transients, otherwise they would have affected uselessly the learned statistics.

5Sequences carrying information about losses and delays of source traffic.
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Fig. 4. Ad-Hoc configuration.

0 5 10 15 20 25 30
−10

4

−10
3

−10
2

sequence number

lo
g−

lik
el

ih
oo

d

wireless2wireless−5m (#1:10)
wireless2wireless−10m (#11:20)
wireless2wireless−15m (#21:30)

Fig. 5. Models comparison.

TABLE I

AVERAGE AND CONDITIONAL STATISTICS OF 2-STATE MODELS.

Ploss Dmean p1 p2 d1 d2
1) 0.91 0.136s 0.94 0.89 0.146s 0.125s
2) 0.91 0.133s 0.94 0.88 0.144s 0.122s
3) 0.91 0.130s 0.94 0.89 0.141s 0.121s

of application requirements, there is the possibility to have
a realistic and innovative network model characterizing the
performance.

A. Ad-Hoc networks

The first step of our analysis has been to evaluate how
significant is a measurement relative to a given configuration.
In order to address this point, a group of 10 different mea-
surements and then 10 output sequences has been considered
for each configuration. A model has been trained on each
sequence and then tested on the remaining 9 sequences of
the same group. The test consists in computing the likelihood
(Eq. (3)) of the test sequences given the model.

Fig. 4 shows the results for a configuration with 10 m ≤ d ≤
15 m, UDP traffic with IDT of 0.1 ms and packet size (PS)
of 128 bytes. The blue solid lines represent the log-likelihood
of the 10 trained models on the 10 output sequences (9 test
sequences and 1 training one with a red asterisk), the green
dashed lines refer to the starting models6.

The almost stable behavior of the trained models assures
that a single measurement and the derived trained model well
represents the particular configuration. Similar results have
been obtained over different configurations. This allows to
consider one model per configuration in order to analyze
analogies and differences among different scenarios. Fig. 5
considers 3 models trained on 3 different configurations and
tested on the 30 sequences from the groups themselves: (i)
0 m ≤ d ≤ 5 m, UDP traffic with IDT of 0.1 ms and PS of
128 bytes; (ii) 5 m ≤ d ≤ 10 m, UDP traffic with IDT of
0.1 ms and PS of 128 bytes; 10 m ≤ d ≤ 15 m, UDP traffic
with IDT of 0.1 ms and PS of 128 bytes.

The red, green, and blue lines refer to the 3 models,
respectively. Sequence numbers from 1 to 10, 11 to 20, and
21 to 30, refer to sequences from the 3 groups, respectively. It
can be noted how the 3 configurations have a similar behavior.

6It is worth noting that the starting models have been chosen in order to
present the correct average statistics.
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TABLE II

AVERAGE AND CONDITIONAL STATISTICS OF 2-STATE MODELS.

Ploss Dmean p1 p2 d1 d2
1) 0.34 4.29s 0.05 0.60 5.91s 2.51s
2) 0.90 1.76s 0.92 0.88 2.00s 1.52s
3) 0.89 1.78s 0.90 0.88 1.92s 1.45s

This is confirmed if we look at the statistics of the configura-
tions. Tab. I shows average and conditional statistics (Eqs. (1)
and (2)) for the 3 configurations, respectively (we considered
2-state models). It can be noted how the similarity involves
not only average statistics, but even conditional, i.e. they have
similar local behaviors. More precisely, the rows are related
to the 3 configurations previously enumerated.

B. Integration of LANs and GPRS networks

The same considerations on the significance of a measure-
ment about a given configuration hold for this new scenario.
Fig. 6 shows the results in the case of integration of LANs and
GPRS networks, for UDP traffic with IDT of 10 ms and PS
of 512 bytes. Fig. 7 considers 3 models trained on 3 different
configurations and tested on the 30 sequences from the groups
themselves: (i) Wired2GPRS scenario: Laptop, Windows XP
OS, UDP traffic with IDT of 10 ms and PS of 512 bytes,
Ethernet ANT at sender side whereas Laptop, Windows XP
OS, GPRS ANT at receiver side; (ii) WiFiL2GPRS scenario:
Laptop, Linux OS, UDP traffic with IDT of 10 ms and PS
of 512 bytes, WLAN 802.11b ANT at sender side whereas
Laptop, Windows XP OS, GPRS ANT at receiver side; (iii)
WiFiW2GPRS scenario: Laptop, Windows XP OS, UDP traffic
with IDT of 10 ms and PS of 512 bytes, WLAN 802.11b
ANT at sender side whereas Laptop, Windows XP OS, GPRS
ANT at receiver side. It can be noted how the second and the
third configurations have a similar behavior, while the first
has a different one. This is due to the presence of the wired
Ethernet channel.

Again this is confirmed via Tab. II showing average and
conditional statistics (Eqs. (1) and (2)) for the 3 configurations
(we considered 2-state models). It can be noted how the
similarity between the second and the third configurations
and the differences with the first one, involves not only
average statistics, but even conditional, that is they have very
different temporal local behaviors. Measurements from the
second and third configurations exhibit a high-delay state (state
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TABLE III

AVERAGE AND CONDITIONAL STATISTICS OF 2-STATE MODELS.

Ploss Dmean p1 p2 d1 d2
1) 0.13 1.52s 0.43 0.001 1.90s 1.33s
2) 0.15 1.79s 0.48 0.001 2.45s 1.45s
3) 0.25 5.17s 0.09 0.37 7.99s 3.68s

1) with higher losses than the low-delay state (state 2), while
measurements from the first configuration exhibits an opposite
behavior, i.e. high-delay state present lower losses than low-
delay state.

C. Integration of LANs and UMTS networks

Fig. 8 shows the results in the case of integration of LANs
and UMTS networks for UDP traffic with IDT of 10 ms
and PS of 64 bytes. Fig. 9 considers 3 models trained on
3 different configurations and tested on the 30 sequences
from the groups themselves: (i) UMTS2Ethernet scenario:
Laptop, Windows XP OS, UDP traffic with IDT of 10 ms
and PS of 64 bytes, UMTS ANT at sender side whereas
Laptop, Windows XP OS, Ethernet ANT at receiver side; (ii)
UMTS2WiFi scenario: Laptop, Linux OS, UDP traffic with
IDT of 10 ms and PS of 64 bytes, UMTS ANT at sender side
whereas Laptop, Windows XP OS, WLAN 802.11b ANT at
receiver side; (iii) UMTS2GPRS scenario: Laptop, Windows
XP OS, UDP traffic with IDT of 10 ms and PS of 64 bytes,
UMTS ANT at sender side whereas Laptop, Windows XP OS,
GPRS ANT at receiver side. It can be noted how the first and
the second configurations have a similar behavior, while the
third has a different one. Indeed, in the first two situations the
perceived performance are influenced by the presence of the
UMTS network.

Again this is confirmed via Tab. III showing average and
conditional statistics (Eqs. (1) and (2)) for the 3 configu-
rations (we considered 2-state models), showing differences
and similarities both on average and conditional statistics.
Measurements from the first and second configurations exhibit
a high-delay state (state 1) with higher losses than the low-
delay state (state 2), while measurements from the third
configuration exhibits an opposite behavior, i.e. high-delay
state present lower losses than low-delay state.

D. Discussion

Comprehension about when it is possible to use a trained
model is crucial to determine its generalization capability.
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Fig. 10. Pareto traffic pattern.

The heterogeneous characteristics of real networks may be
assumed as sequences of almost stationary periods, some-
times needing parameters re-estimation. An adaptive protocol
limiting the resource spent for its training is desirable. The
previous analysis reveals that: (i) each configuration presents
stable characteristics, both long- and short-term (average and
conditional statistics); (ii) components of different scenarios
like terminal distance, OS, etc. do not seem to influence
the equivalent channel but scaling numerical values; (iii)
things are different for access-point and/or end-point typology,
etc. that modify channel behavior more significantly, altering
loss-delay cross-correlation. Stable characteristics of various
configurations testify that the model is well posed and can
work also in wireless environments. The analysis shows that
the model works by distinguishing different modes (short-
term behavior) on the basis of loss/delay characteristics in the
equivalent end-to-end channel, and it does not depend on the
nature of the links implementing the channel (wired, wireless,
etc.). Whenever the equivalent behavior is characterized by
a mixture of simpler modes, the model is able to find them
out, compatibly with the number of hidden states it has been
furnished. No matter if the bursty behavior is due to buffer
overflows, deep fading or whatever else, the models only
cares about how they affect loss/delay statistical behavior7.
However different modes are typically related to different
phenomena, i.e. the model allows to infer loss/delay nature
(wireless, congestion, etc.) via state estimate.

E. Analyzing Pareto Traffic Patterns

The model was also used on UDP traffic with Pareto and Ex-
ponential distributed IDT. To simplify the training procedure
we considered a quantized version of ∆ = [∆1, . . . ,∆L]T as
input sequence8. In this case we took into account UMTS
ANT, Windows XP OS, UDP traffic with PS of 64 bytes
Laptop at sender side whereas WLAN 802.11b ANT, Windows
XP OS, Laptop at receiver side. Fig. 10 shows an example
of input and output sequences for Pareto UDP traffic with
shape and scale parameters α∆ = 15 and β∆ = 9 ms. The
input sequence has been quantized with two levels, 1 for

7We do not address the problem of studying the sensibility of the model
depending on the PS of the source traffic. Most likely different packet-size
traffics experience totally different paths, considering a unique equivalent end-
to-end model is not appropriate in our opinion.

8This allow to avoid dealing with softmax functions in the training
procedure [14] being A a 3-dimensional matrix.
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Fig. 11. Pareto traffic correlation.
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∆n < α∆β∆
α∆−1 and 2 for ∆n ≥ α∆β∆

α∆−1 . It can be seen how the
channel behavior is strongly influenced by the input sequence.
Long sequences of 1’s in the input sequence (high bit-rate)
induce a very lossy behavior to the channel. This dependence
strengthens the proposal to account for variable source traffic
and reveals very appropriate when the source traffic cannot be
assumed a neglecting portion of the total one.

Fig. 11 shows the autocorrelation of the starting and trained
models compared to the auto-correlation of a Pareto UDP
trace. This example shows how the IO-HMM is the appropriate
generalization of the HMM previously considered. Similar
results to previous scenario have been obtained for various
non-periodic UDP traffic typologies.

F. Predicting the network behavior

The trained models have been used for prediction purposes
on a same path. Testing prediction capability is a necessary
step for the evaluation of the model effectiveness if thought
as a component of a more complex network-sensing and
adaptive communication protocol. The network-sensing, the
prediction and the adaptive steps are to be based on current-
state estimate. State estimated by use of the Viterbi algorithm
[16] has shown to be well representative of the congestion level
of the path [13] showing sufficient local stability. Furthermore,
it is worth noting that states can be labeled as “favorable”
and “unfavorable” basing on their conditional statistics (pi

and di) allowing definition of appropriate adaptive strategies.
Preliminary tests have been performed showing good results.
We considered a single scenario, the corresponding trained
model, and different output sequences. The output sequences
have been iteratively processed by the model such that:

sensing:W samples of the output sequence are used to
estimate the current network state by use of the
Viterbi algorithm [16];

prediction: the network is assumed to behave as being in
the estimated state (i.e. with average statistics given
by the corresponding conditional ones) for a time
proportional to the average duration of the state9.

Fig. 12 shows a portion of a trace related to the first
configuration presented in Section III-C. Conditional mean
delays are plotted to denote estimated and predicted states.
The blue-line refers to the output sequence (packet loss/delay),

9The average duration in state xi is given by 1
1−Ai,i

.
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Fig. 13. Training the model for TCP traffic.
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Fig. 14. TCP traffic correlation.
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Fig. 15. Test on TCP patterns.

the green circles refer to data used for Viterbi state estimate
while the red points represent the predicted states. However
many details have not been analyzed yet, such as dependence
on the length of the window for the state estimate, influence
of the type of prediction, definition of the adaptive strategies,
etc. Similar results have been obtained for other scenarios.

G. The proposed model in the TCP scenario

The proposed model has been tested also on TCP traces.
We have taken into account WLAN 802.11b ANT, Linux
OS, TCP traffic with IDT of 10 ms and PS of 128 bytes,
Laptop at sender side whereas GPRS ANT, Windows XP OS,
Laptop at receiver side. Obviously in this case we have taken
into account only network delays (p is the null vector). The
training procedure captures delay statistics also for the case
of TCP, Fig. 13 shows the histogram of the delays of the
output sequence used as training set and the pdf of delays
of the starting and trained models. Though it could seem
that the models before and after learning procedure are very
similar, the difference can be appreciated looking at the delay
auto-correlation. Fig. 14 shows via the auto-correlation of the
starting and trained models and of the output sequence how
the the data behavior is well captured. The effectiveness of the
trained model has been tested on different output sequences
from the same group of measurement. In Fig. 15 the likelihood
of the starting and of the trained models is shown for a
group of 10 sequences, where every point represent a TCP
output sequence. It turns out that also for TCP data a trained
model holds his generalization capability. The recent interest
for Bayesian technique in TCP scenario relies on the ability
to better infer channel state from loss/delay observation [18].

IV. CONCLUSION

In this work we presented an HMM-based packet-channel
analytical model applied to heterogeneous wireless networks
and its validation. The model showed to capture network
behavior quite well and to predict packet loss/delay statistics.
We tested the model over a wide range of network scenarios,
showing results related to Ad-Hoc networks, integration of
GPRS and WLAN 802.11b, and integration of UMTS and
WLAN 802.11b. The experiments showed how components of
different scenarios play different roles in the equivalent end-
to-end channel model, some inducing a simple scaling in the
model parameters, others dramatically changing the correlation
structure of loss/delay phenomena as well as the short-term
behavior of the network. The model has been also tested
in its capability to take into account explicitly the influence
of the source traffic on the network. Preliminary tests have
been performed on TCP traces showing encouraging results.
Finally tests on prediction capability have been performed to
ensure about its effectiveness, though they are only a first-step
verification (being performed on off-line measurements).
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